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Subscripts 
1, 
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\v, 
X, 
I, 

NOMENCLATURE 

gain term of the collision integral; 
collision integral; 
loss term of the collision integral; 
distance between the parallel plates; 
molecular velocity distribution function; 
Boltzmann constant ; 
Knudsen number, equation (1); 
molecular mass; 
gradient parameter, equation (2); 
number density; 
twice the number density of the molecules 
reflected from the cold wall; 
dimensionless number density, (n/n1 - T,/T,)/ 

(1 - T,/T,); 
heat flux: 
temperature; 
x coordinate; 
thermal accommodation coefficient = 

(T - T,)/(T - KJ; 
integration variable, equation (4). 

at cold plate; 
;It hot plate; 
incident molecules; 
reflected molecules; 
plate; 
.x-coordinate; 
at right angle to x. 

Superscripts 

(-1, (bar) average quantity. 
Symbols set in bold type are vector quantities. 

IN ANY flow region having large property gradients, the gas 
is far from thermal equilibrium. The gas in such a flow 
region can be described by the Boltzmann equation, the 

basic equation of kinetic theory. The major difficulty in 
solving the nonlinear Boltzmann equation is the intractable 
form of the collision integral in it. The collision integral 
represents the rate of change of velocity distribution due 
to intermolecular collisions. It is directly related to the local 
departure from thermal equilibrium, and its evaluation is 
essential in studying non-equilibrium phenomena in rare- 
lied gases as well as in solving the nonlinear Boltzmann 
equation. 

Nordsieck’s Monte Carlo method of evalua~g the 
Boltzmann collision iritegral Cl] has been used to solve the 
non-linear Boltzmann equation for the heat transfer problem 
between two plates at different temperatures [Z]. A small 
part of the results of the problems of heat transfer in rarefied 
gases was presented at the Sixth and Seventh International 
Symposiums on Rarefied Gas Dynamics [2, 3f. We shall 
describe in this paper the application of Nordsieck’s 
method to these problems and some typical results. 

Solutions have been obtained for these problems by 
solving the Krook equation [4], by solving the Boltzmann 
transport equations [S, 61, or by using the Monte Carlo 
simulation technique [S-7]. We have compared the Boltz- 
mann solutions with two of these solutions that we repro- 
duced and with an experiment [S]. 

We consider the problem of heat transfer between 
parallel plates having two different temperatures, TL and 
Tz (Tz > T,), and at distance d apart. The physical system 
is characterized by two parameters: a length parameter Kn 
and a gradient parameter, M, related to the departure from 
thermal equilibrium: 

in which 6,, = average local equilibrium collision frequency. 

M, = [2(T, - T,M(T, f T,)] Kn. (2) 

The parameter KS may be interpreted as the reciprocal of 
the number of mean free. paths between the two plates and 
the parameter M, as the gradient in each mean free path. 
In order to study the detailed non-equilibrium gas behavior 
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RG. 1. VeTocity spa= for axialfy s~rnrnet~~ca~ mofecular 
flows. u, = velocity in x-direction, vI = velocity at right 
angle to X. Subscript m denotes machine unit used in the 

computer program. 

FIG. 2. schematic representation, in rretoeitg space, of two 
groups of molecules that move in opposite directions, . ^ I”. 

of the heat transfer problem, solutions should be obtained 
for a large range of huth parameters, Let us consider. for 
example, cases with the same M, but different ~afues of 
Kn, i.e. the temperature grad&~ per mean frtx: path is rke 
same but &e number of mean free paths between the tw:~) 
plates differs. The behavior of the gas in a mean free path 
is expected to change with the Knudsen number and it is 
of interest to study the difference in this behavior for 
different values of Rn, Also, it is quite clear that the linearized 
sotutions which have been obtained for small temperaturn 
diffemces yield results 0nIy For a narroW range oT non- 
eq~~l~b~~rn conditions. 

The Boltzmann equation for one-dimensional flows may 
be written as 

e,(d/ldx) = (a - hf) i3r 

in which .f. = ffa, sf = velocity distribution function and 
(a - 8?___) = coflision integr& &, sf_ the gain term in rkc 
coil&ion integral; is t.he rate of scattering of molecules in dts 
of velocity space. b(u, x) f(a x), the loss term, is the rate of 
scattering of molecules out of du of velocity space. 

“The direct evaluation af the thousands of collision 
integrals needed, each one of which is a nonlinear. five- 
d~rne~s~onal integral, would require months on tkc fastest 
presentday computer. Nordsieck [t] devised a statistical 
sampling technique closely resembling the real statistical 
collision phenomerta in the gas. With his method, the com- 
putation time of the imegrals is reduced to the order of an 
hour, witk accuracy of the order of one per cent. 

Tke molecutar flow in the heat transfer problem b 
ax~~~ysymn~~tr~~a~, that is, tke velocity d~st~~but~on function 
.f = ,$(c,, a,]. aI = veh&ty in tke direction at right angle 
to X. The velocity space considered is therefore two-dimen- 
sional. As shown in Fig. 1, the velocity space in Nordsieck’s 
method is quantized by covering the semi-circular region 
with 226 fixed cells. The Monte Carlo calculations produce 
226 values of each of the functions ‘*G” and &’ for each 
iteration for a given set of j-i?& I?; I. 

Xn our iterative scheme For &-&grating the Boltzmaan 
equation we replace the position variable x by z with 

(dr/dx) = Kn(,/2/,in) vlri (4) 

in which n = local number density and ‘r = Iocai tempera- 
ture. 

The ~o~~a~ condition used ~orres~~~~ds ro isotropic 
emission with eitker complete or incompietc energy amm- 
modation. The accommodation coefficient a is defined as 
MlOWS. 

h _?r (T - 2x7; - T,.j i.sb 

En wh~cfr r; and T, are the t~m~era~ur~~ of tke incider% a~cf 
ret&ted m~km.xIes respective$ and @ = plate tem~ra~r~ 

ln order to explain the numerical method, it is convenient 
to show schematicallv in Fie. 2 the velocitv mace at three 
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r-positions. Each semi-circular region has two quadrants. 

The quadrant with o, > 0 is for the molecules moving toward 

the hot plate and that with u, i 0, for the molecules moving 

toward the cold plate. There are 113 velocity points in each 

quadrant. One Boltzmann equation is associated with each 

velocity point. The integration of 113 Boltzmamr equations 

of the right-moving molecules is from r = 0 to r = 1, while, 

for the left-moving molecules, the integration of the 113 

Boltzmann equations starts from T = 1. The form of the 

distribution function at each starting position is determined 

by the boundary conditions at each plate and is thus known; 

however, the density is unknown. The distribution function 

at the terminating position is also unknown. The integration 

scheme of the 226 Boltzmann equations is also divided .into 

two parts for the two groups of molecules. The computation 

scheme was designed according to the following conditions 

peculiar to the heat transfer problem: 

(1) The boundary conditions at t = 0 and r = 1 are 

half-range Maxwellians with Ti and 7” equal to either 

the wall temperatures or a fraction of them (for 

tl < 1). The ratio n&z, is unknown. ni and n2 are twice 

the number density of reflected molecules at the cold 

plate and the hot plate respectively. 

(2) There is no mass motion of the molecules. 

The iterative procedure consists of the following steps: 

Step l-Divide the variable r into J intervals. 

Step 2-Assume initial distribution function f = f”(u, T). 

Step 3-Evaluate the collision integral for this f at each r. 

Step &Integrate the resulting differential equation for each 

of the 226 velocity vins to get f’(s, r). The integra- 

tion of the 113 Boltzmamt equations in the right 

quadrant is from 0 to 1, and in the left quadrant, 

from 1 to 0. 

Step 5-The half range moments of f’(t), 1) (i.e. at the hot 

plate) are computed and the values of f’(v, 1) at 

the left quadrant (i.e. for V, < 0) adjusted to insure 

zero mean flow of the gas. 

Step 6-Repeat steps (3), (4) and (5) to perform successive 

iterations. 

We use the rms difference of successive iterates to measure 

the residual bf and to monitor the convergence of the 

iterative process. 

As indicated above, our method of solving the Boltzmann 

equation consists of two parts: evaluating the collision 

integrals by a Monte Carlo method and integrating the 

Boltzmann equation. These two parts are carried out 

separately in two computer programs. We also have a 

subprogram for evaluating the Krook model of the collision 

integral and incorporated it in the program so that we may 

use it in place of the Monte Carlo program to solve the 
Krook equation. In essence, therefore, we tackle the Krook 

equation by using the same iterative scheme we designed 

for solving the Boltzmamr equation. Since any systematic 

error due to integration for the solutions of the two equations 

is comparable, it would be more meaningful to make com- 

parative studies. It should be pointed out here that it is 

difficult to make compatible comparison with other solu- 

tions obtained by other researchers who used different 

definitions of Kn. 
We have used Lavin’s scheme to obtain 4-moment 

solutions of the Boltzmann transport equations; however, 

his scheme had to be mod&d slightly due to the difference 

in the definition of Kn used. 

Boltzmamr solutions have been obtained for the caSe of 

complete energy accommodation (01 = 1) for the following 

ranges of parameters: (1) K,: 0.1-100, (2) M,: 0.03529-35.29, 

(3)T,/T,: 0.1-0.9. 

Nine stations dividing the variable r were generally used; 

however, in order to get more detailed information in the 
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FIG. 3. Comparison of the results on heat flux. 

Knudsen layer, fifteen stations were selected for solutions of 

less Kn. Monte Carlo samples of 213 collisions were used. 

Four independent runs were made to obtain the statistical 

errors. 
Figure 3 shows the heat flux as a function of Kn for 

T,/T, = 0.7. In the transition regime, the Monte Carlo 

values are slightly smaller than the 4-moment values but 

appreciably larger than the Krook values. Similar differences 

were found for other values of T,/T, and for the normal 

stress in x-direction. 

The temperature and density profiles for two values of 

Kn (10 and 0.5) and T,/T, = 0.7 are compared with the 

corresponding results of the Krook solution and the 4- 

moment solution. As shown in Figs. 4 and 5 there are 

apprecrable differences between the Monte Carlo results 

and the other two calculations. The most significant 

difference is that, for the case of Kn = 0.5, both temperature 
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and density profiles obtained from the Monte Carlo 

solutions exhibit nonlinearities near each boundary (much 

more near the hot boundary) and thus show the presence 

of the Knudsen layer. The corresponding profiles obtained 

from the 4-moment and Krook solutions are practically 

linear. 
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FIG. 4. The temperature as a function of distance variable T. 
Kn = 10 and 0.5. TJT, = 0.7. 

Calculations of the functionals of the collision integral 

make it possible to study in detail the local departure from 

equilibrium. For example, we have found that several 

moments of the collision integral exhibit sharper forms of 

nonequilibrium behavior in the Knudsen layer than either 

the temperature or the density profile [2]. 
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FIG. 5. The reduced density ii as a function of distance 
variable T. Kn = 10 and 0.5. T,/T, = 0.7. 

We have compared the density profiles with those deter- 

mined in an experiment [S] for the following cases: Kn = 

06313,0.2493 and 0.0548; TJT, = 0.783; OL = 0.826. Figure 
6 illustrates the result for Kn = 0.2493. This agreement is 

an indication that we are able to make accurate calculations 
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under near-equilibrium as well as far-from-equilibrium ACKNOWLEDGEMENT 

1869 

conditions. 

l- 

i- 

I I I I I I I I I 

Kn = 0.2493 
T;/G 20.783 

a =OB26 

@ . 
. 
P’ 

A Monte Carlo 
(maximum prob. error 
less than 0025%) 

P Experimental results 
(Teogon and Springer) 

I I I I I I I I I 

0.2 04 06 0.8 

Distance variable, ‘r 

FIG. 6. Comparison of a density profile with that determined 
in an experiment. 

This work was supported by the Joint Services Electronics 
Program (Contract Army DAAB-O7-67-C-0199) and the 
Otlice of Naval Research (contract NOOOl4-67-A-0305 
0001). 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

REFERENCES 

A. NORDSIEK and B. L. HICKS, Monte Carlo evaluation 
of the Boltzmann collision integrals, Proc. Fifth Intl. 
Symp on Rar. Gas Dyn., Vol. 1, pp. 695-710 (1967). 
S. M. YEN and H. J. SCHMIDT, Monte Carlo solutions 
of the Boltzmann equation for heat transfer problems, 
Proc. Sixth Intl. Symp. on Rar. Gas Dyn., Vol. 1, pp. 
205-213 (1969). 
S. M. YEN, Solutions of the Boltzmann and Krook 
equations for heat transfer problems with Maxwell 
boundary conditions, Proc. Seventh Intl. Symp. on Rar. 
Gas Dyn. (to be published). 
D. G. ANDERSON and H. K. MACOMBER, Numerical 
experiments in kinetic theory, Proc. Fourth Intl. Symp. 
on Rar. Gas Dyn., Vol. 1, pp. 96-l 11 (1965). 
M. LAV~N, A Monte Carlo solution for heat transfer in 
rarefied gases, MS. Thesis, MIT (1961). 
J. K. HAVILAND, The solution of two molecular flow 
problems by the Monte Carlo method, Merh. Comp. 
Phys. 4, 109-209 (1965). 
M. PERMUTTER, Analysis of Couette flow and heat 
transfer between two parallel plates enclosing rarefied 
gas by Monte Carlo, Proc. Fifth Symp. on Rar. Gas 
Dyn., Vol. 1, pp. 455-480 (1967). 
W. P. TEAGEN and C. P. SPRINGER, Heat transfer and 
density distribution measurements between parallel 
plates in the transition regime, Physics Fluids 11,497-506 
(1968). 

Inf. .I. Hear Mass Trans/Pr. Vol. 14, pp. 1969-1873. Perssmon Press 1971. Printed I” Great Brhin 

MASS TRANSFER DURING FILM BOILING ON VERTICAL FIBERS 

VERNON A. NIEBERLEIN 

Physical Sciences Directorate, Research, Development, Engineering and Missile Systems Laboratorv, U.S. Army Missile 
Command, Redstone Ars&l, Alabama 35809, U.S.A. 

_. 

A, 
4, 
A IV, 
D, 
D BW 
Ds, 

(Received 22 December 1970 and in revisedform 10 May 1971) 

NOMENCLATURE 
fiber cross-sectional area [cm2]; 
final fiber cross-sectional area [cm’]; 
tungsten wire cross-sectional area [cm’]; 
mass diffusivity [cm* min- ‘1; 
average diameter of the deposit [cm]; 
diameter of the deposit [cm]; 

? 
diameter of the tungsten wire [cm]; 
a function detlned by equation (10) [cm - i] ; 

9, gravitational constant [cm minz]; 
h, thickness of a fiber slice [cm]; 
k I’ 
E, 

rate constant [g moles cmd2 min-’ in.0’246]; 
liquid evaporation rate [cm min- i] ; 

MSl molecular weight of Sic; 


